XCP: An Experimental Tool for Managing Cooperative Activity

Suzanne Sluizer and Paul M. Cashman
Intelligent Systems Technologies Group
Digital Equipment Corporation
77 Reed Road, HLO2-3IC07
Hudson, MA 01749

Abstract

A project usually requires the cooperative efforts of more than one person to accomplish its
goals. As the number of people working on a project increases, the time spent in coordinating
their efforts multiplies, and difficulties often arise. Communication breakdowns cause major problems
because communication is the cornerstone of effective cooperation. Decision making becomes
complicated because areas of responsibility are ambiguous. Procedures which are set up to ensure
critical actions occur often degrade over time. XCP is an experimental coordinator tool which
assists an organization in implementing and maintaining its procedures. Its goal is to reduce the
costs of communicating, coordinating, and deciding by carrying out formal plans of cooperative
activity in partnership with its users. It tracks, prods, and manages the relational complexity as
captured in the formal plan, so that human resources are available for more productive tasks. It
can aid in the training of new staff because they do not have to learn a procedure in an ad hoc
fashion. A prototype has been implemented in the VAX LISP™ language, and runs on a VAX™
11/785, 11/780, or 11/750 processor under the VMS™ operating system.

1. Introduction

Consider a typical project. It has more than one team member, so tasks must be subdivided
and assigned to individual team members. Because of the dynamic and interrelated nature of
these subtasks, it is often difficult to keep track of what each team member is supposed to be
doing, and some subtasks may be forgotten. Another factor which compounds these difficulties
is that an individual team member may be assigned to work on more than one subtask. Such
an individual must keep straight the functions and responsibilities of each subtask, and can be
easily overwhelmed by complexity as the relationship among subtasks becomes more intricate.

Communication is essential to the success of multi-person projects. A change in one
individual's work assignment or schedule may significantly affect other team members. Projects
institute weekly meetings and regular progress reports to ensure that critical communication occurs.
However, these techniques often must be supplemented by spontaneous meetings and informal
conversations at the coffee machine. [Peters83] argues that the “transaction costs" of
communicating, coordinating, and deciding have been vastly underestimated. These costs arise
from a geometric increase in complexity associated with arithmetic growth in numbers of employees,
if they need to interact to get tasks done. Simply put, transaction costs rise explosively with the
number of people who must work together on a task.

An example of this coordination problem as it arises in software maintenance is as follows.
One problem report may in turn be subdivided into a sequence of problems to be parceled out
to various workers. A given problem may have to be handled as a sequence of fixes in successive
releases. Conversely, a given fix may take care of several different problems.

In addition to these complex static relations among objects, there are dynamic processes
overlaying the task structure. The problem must be classified, its priority set relative to other
problems, and it must be assigned to a team member. When a fix is proposed it must be assigned
to a release, announced in release notes, and the user who originally reported it must be informed.
The list of such possible tasks for team members is obviously quite large. At another level, the
manager wants to monitor the team’s activity.

Most tools deal exclusively with the configuration management aspects of this coordination
problem in software maintainance by managing files [Feldman79] [Lampson83]. These approaches
keep track of the relationships between the parts (i.e., files) of a software system, and use
consistent parts to rebuild the software whenever changes have been made. Such tools have
automated a complex process and fill an important need in maintaining software, but do not
address the higher-level issue of how to coordinate the actual tasks of software maintenance.
Furthermore, they are special-purpose tools and do not provide general support for cooperative
activity. There are a few ongoing efforts to build environments that assist software projects to
accomplish their communication and management tasks [Kedzierski82] [Holt83].

Our goal is to reduce the transaction costs of communicating, coordinating, and deciding.
We accomplish this by formalizing and automating protocols, which are plans of cooperative
activity to facilitate organizational procedures. Protocol execution requires the active participation
of team members. For each application, a set of roles is identified that loosely corresponds to
the tasks to be done, and which team members may assume. A set of objects, which represents
the types of communication that may occur among roles, is also identified. Finally, we develop
an automated method to support people as they assume and carry out their organizationally
defined roles and responsibilities.

2. The XCP Tool

The experimental coordinator tool we will describe, XCP, supports and manages cooperative
activity by interpreting protocols which implement and enforce organizational procedures. We
believe it reduces the coordination complexity as perceived by a participant because it moves
the procedure from the participant's head to a tool. Its purpose is to ensure that necessary
communication takes place, as well as improve the coordination of the project members as they
carry out their tasks. It also supports the assignment of multiple subtasks to a single project
member.

There are several key concepts which XCP implements. A person is simply a human being.
A role is a codification of some function or subtask. Most people assume several roles during a
work day. For example, the authors between them assume such diverse roles as project leader,
software engineer, lecturer, and writer. Each role is responsible for some part of the total activity,
and carries with it a set of rights, responsibilities, and expected behaviors with respect to other
roles. In general, the relation between persons and roles is many-to-many. An actor is a person
who has assumed some role. An object is the symbolic representation of some thing; for example,
in the software maintenance scenario described in the Introduction, there might be objects such
as problem reports, fix reports, releases, and software modules.

XCP allows its users to define plans of cooperative activity, called protocols. A protocol
describes the activities or tasks which make up an organizational procedure. XCP coordinates the
actions of the project members, and assists them in carrying out that plan. It tracks activities
through the defined protocol, keeps a history of all activities on a per-object basis, and informs

users of the status of each activity. A user may suspend the protocol (i.e., an object’s processing)
at any point and resume it later at that same point. By querying XCP, each team member may
answer questions such as:

* On what objects am | working now (in a specific role or all my roles)?

e What is Joe’s long-term work load (in all his roles)?

e What roles does Jane play?

e What objects for role R have not yet been assigned to any actor?

e Who has worked on object O? What has been done, and what must be done next?

XCP has a very simple command set. ASSUME-ROLE allows a person to assume a
protocol-defined role. CREATE makes a protocol-defined object. SHOW gives information about
an object, a collection of objects, a role, or a person. STATUS gives information about where
in the working-out of the protocol an object is. WORK-ON resumes the protocol for some object
from the point at which it was suspended. ESCAPE-TO-EXEC allows a user to temporarily leave
the tool environment to interact with the operating system. LOGOUT logs a person out of XCP.

The workhorse command of XCP is WORK-ON. It activates the protocol on some object for
an actor; that is, it presents the actor with a series of actions to perform, where the series is
determined by the role of the actor and the state of the object. Thus, within the context of a
protocol, a user has only one command to carry out the cooperative plan. In concept, WORK-ON
replaces an abundance of special-purpose commands to manipulate objects. The functionality of
these commands has been captured in the protocol primitives described in Table 1 below.

Primitive Action

accept-delivery accept delivery of an object dispatched from
an actor in a different role

attach attach one object to another by reference
classify set the attribute values of an object

dispatch ‘ send an object to an actor in a different role
wait wait for an object to arrive in a role
you-decide ask the actor currently working on an object

a question

Table 1: XCP Protocol Primitives

Not all commands or command options are available to all users. Persons can only log in,
log out, and assume some set of roles; they can perform no other actions. A role is defined by
its rights and a set of actions which can be performed in a given order on a class of objects.
Any person who can assume a role automatically has permission to execute its set of actions
while acting in that role.

XCP is founded on earlier work in the area of coordinator tools, in particular MONSTR, the
Monitor for Software Trouble Reporting used by the National Software Works project [Cashman80],
[Holt81].

3. The XCP Architecture

The functionality of XCP is partitioned into terminal-specific and terminal-independent parts.
It has been divided into these parts for three reasons. First, multiple terminal types could be
supported with a terminal-specific piece for each terminal type, while the terminal-independent
part would remain unchanged. Second, such a partitioning could allow the terminal-specific part
to reside on a host different from the host on which the terminal-independent part is executing.
Third, the terminal-independent part could receive its input from sources other than a terminal
(e.g., a file of stored commands or another program).

The terminal-independent part has been further partitioned into application-independent and
application-specific parts. The application-independent part consists of the protocol primitives and
type definitions which are used to build up protocols. The primitives indirectly interact with the
user at the terminal to effect certain basic actions, as discussed in the previous section. A user
can respond to a primitive by “suspending” it; this means that the primitive must wait until the
user “resumes work" on it to complete its execution. The application-specific part is a protocol
written in terms of the primitives and type definitions provided by the application-independent. part;
it may also contain specialized type definitions relevant to the application. It is composed of
- particular roles and types, as well as functions which represent the actions of each actor.

The terminal-specific part of XCP is referred to as the Command Interface (Cl). It is logically
and physically a separate program from the terminal-independent part, which is called the Protocol
Task (PT). The division of XCP functionality is shown in Figure 1 below; the arrow represents
information flow.

Terminal-specific Terminal-independent
Command Interface (CI) Protocol Task (PT)

Application-specific
(protocol)

| Application-independent
(protocol primitives)

Figure 1: The Division of XCP Functiomality

The CI interacts directly with a person at a terminal, and can be thought of as the user’s
front end. It formats the screen, performs command recognition, prints messages on the screen,
and interacts with the PT through the exchange of messages. These messages represent either
user-instigated commands or choices made in response to "demands” from the PT as it executes
the protocol. There is one Cl per active user.

The PT, when started, waits for a variety of messages. These messages represent the
working-out of the protocol, and fall into five classes: commands from a user at a terminal, a
user's answers to questions generated by the protocol primitives, information which must be
displayed to a user, transmission of a user’s answer from the protocol primitive to the invoking
protocol role code, and the movement of objects from one role to another. Some of these
messages are exchanged between the PT and Cl; others are generated internally by the PT.

¢

-’

-

Messages are sent between the PT and Cls via operating-system-supported buffers. The PT
has one buffer through which it receives messages from all Cls. Each Cl has its own buffer
through which it receives messages from the PT. To communicate, a process simply writes into
the appropriate buffer.

Figure 2 below illustrates the architecture of XCP, which reflects the division of functionality
pictured in Figure 1 above. Note that the terminal-specific part is represented by muitiple Cis
which communicate with a single terminal-independent PT. The arrows represent information flow
between the Cls and PT via their buffers.

PT

)

Figure 2: The Architecture of XCP

XCP runs on a VAX™ 11/785, 11/780, or 11/750 processor under the VMS™ operating system,
and supports multiple concurrent users. It uses the VMS mailbox mechanism' as its buffers. it is
written in the VAX LISP™ language, which is based upon the Common Lisp dialect [Steele83), _
with some extensions. XCP represents persons, roles, actors, and objects with a small,
frame-oriented knowledge representation language in which type hierarchies can be defined. A
type is a set of named slots that can hold arbitrary values, and may inherit slots from one or
more parent types. The control mechanism for XCP is provided by a set of functions which
supports concurrent programming through message passing, and is used to build a set of protocol
primitives which can be used to construct any protocol. The application protocol itself is written
in a highly stylized form of Lisp, and consists largely of calls to the protocol primitives.

4. An Annotated Example

An annotated example of XCP usage, based on a simple protocol to manage problem reports,
appears below. The protocol has three roles: USER, WORK-ASSIGNER, and DEVELOPER. Three
persons, BARRETT, WINTER, and GORDON, may assume these roles as follows: BARRETT has
been given permission to assume the USER role, WINTER has been given permission to assume

the WORK-ASSIGNER and DEVELOPER roles, and GORDON has been given permission to
assume the DEVELOPER role. The relationship among the persons, roles, and actors is shown
in Table 2 below. An actor is denoted by P@R (read person P in role R).

Person Role) Actor

BARRETT USER BARRETTQUSER

WINTER WORK-ASSIGNER WINTERQWORK-ASSIGNER
DEVELOPER WINTERQDEVELOPER

GORDON DEVELOPER GORDON@DEVELOPER

Table 2: Relationship among Persons, Roles and Actors

A USER creates a problem report (P-R in Figure 3), which is then sent to the
WORK-ASSIGNER role, but cannot be sent to a specific person in that role. (This restriction is
part of the USER role definition, and is enforced by XCP.) The WORK-ASSIGNER sends an
acknowledgement (ACK) to the originating USER. The WORK-ASSIGNER then assigns the problem
report either to a specific DEVELOPER (based upon such criteria as work load and problem area)
or just sends it to the DEVELOPER role where any person in the role is allowed to take charge
of it. The DEVELOPER proposes a solution, which is sent back to the WORK-ASSIGNER as a
fix report (FIX). The WORK-ASSIGNER sends a user reply (U-R) to inform the originating USER
that the problem has been handled. A picture of this protocol appears in Figure 3 below. The
arrows represent objects traveling between roles, and are actually messages as described in the
section on the Architecture of XCP.

P-R [P-R

WORK
USER ACK ASSIGNER DEVELOPER

U-R ‘“—J P

Figure 3: A Simple XCP Protocol

We will show the session as it might appear on a hard-copy device, although currently XCP
exclusively uses the VT100™ video display terminal. We have slightly modified the wording of
some output because it could not be adequately represented in hard-copy form. The user interface
for the VT100 terminal formats the screen by using reverse video for emphasis, command
recognition, command and options menus, and a header with information useful to the actor. A
user can type "?" and receive help from XCP at any time.

In the example, the VMS system prompt character is $, the XCP prompt character is ">",
XCP output appears in bold, and comments on the session appear in italics. Control-Z (denoted
by “Z in this transcript) is used by the user to signal “no more input' as well as "suspend".

$ XCP Start XCP from VMS operating system.

>login Winter Identify Winter as a person.

You can assume these roles: Persons can only log in, assume roles, and log out.
WORK-ASSIGNER Presumably another role-player has given Winter
DEVELOPER permission to assume these roles.’ .

Your choice? WORK-ASSIGNER
>show person Winter

You are responsible for the following objects:

Identifier Title Role

P15 Program loops when given null Input WORK-ASSIGNER
P22 Unable to start program after 5:00pm DEVELOPER
ACK14 Acknowledgement for P15 WORK-ASSIGNER
FIX16 Fix report for problem report P5 WORK-ASSIGNER
UR25 User reply for problem report P7 WORK-ASSIGNER

There are four types of objects of interest here. Problem reports describe an anomaly in the
behavior of some program. Acknowledgements assure the user reporting the problem that the
developers will work on it. Fix reports describe a specific solution to the problem reported. User
replies report the solution to the user who originally reported the problem.

dstatus P15

The last thing you did to P15 was to attach It to ACK14.
The next thing you can do to P15 Is to dispatch ACK14 to BABRETT@USER.

XCP knows where the protocol for P15 was last interrupted, and that ACK14 is related to P15
and must be handled next as part of the working-out of the protocol for P15,

>work-on ACK14 Resume the protocol for ACK14.

Now you can dispatch ACK14 to BARRETT@USER.
First, you can enter text to be sent.

Your options are: text (filename> °Z ?
Your cholce? stdack.txt '

XCP continues to ask for more text until Winter signals that there is no more text to be input
by typing control-Z.

Your options are: text <filename> “Z ?
Your choice? “Z

Do you want to dispatch ACK14 to BARRETT@USER now?
Your options are: yes no 4 ? j
Your choice? yes

ACK14 has been dispatched to BARRETT@USER.
You have completed your work on ACK14.

Winter dispatches the acknowledgement to the actor who originated the problem report. If
Winter had replied “no" or “control-Z" to the dispatch question, the protocol would have been
suspended at that point until Winter resumed it by giving XCP the command to work-on ACK14.
Winter is told that all work has been completed on ACK14. This means that ACK14 or any
obiects‘created as a result of ACK14 will never return to the WORK-ASSIGNER role.

Now you can dispatch P15 to someone In DEVELOPER.
First, you can enter text to be sent.

Recall that this protocol required an acknowledgement to be sent to the originating USER

before the problem is forwarded to a DEVELOPER. Since that obligation has been fulfilled, the

protocol now continues by prompting WINTER to assign the problem to a DEVELOPER.

Your options are: text <filename> Y 4 ?

Your choice? t

Type your text and end it with control-2.

This is a serious problem and should be fixed as soon as possible.*Z

Your options are: text <fllename> °Z ?
Your choice? -2

Next step is to dispatch P15 to someone in DEVELOPER.
Your options are: {specific person> anyone “Z ?
Your choice? gordon

Winter sends it to the actor GORDON in the role of DEVELOPER. Had it been sent to the
role but to no specific person, presumably someone in the ro{e would take charge of it.

P15 has been dispatched to GORDON@DEVELOPER.
Winter has done all work possible on both ACK14 and P15 GORDON@DEVELOPER will
eventually produce a fix report for P15 for which Winter must send out a user reply to the

originating user BARRETT@QUSER. Now Winter can ask XCP to work on some other object,
for status information, to assume another role, or to log out.

Jstatus P15

The last thing you did to P15 was to dispatch it to GORDON@DEVELOPER.
You are waiting for a reply to arrive from GORDON@ DEVELOPER.

Jlogout
Leaving XCP.
5. Status of the XCP Project

An XCP prototype has been implemented, as have several application protocols. Each protocol
is layered on top of the general coordinator capabilities, and supports organizational activity by

L e—

e

executing the plan of cooperative activity. The application area of immediate interest is problem
reporting, and the first protocols written have been in this domain. However, there is nothing in
the general coordinator capabilities which ties XCP solely to problem reporting, and we hope to
extend some of these protocols to encompass more comprehensive software project management
procedures.

The first application to which XCP is being applied is to manage problem reporting for two
Digital Equipment Corporation expert systems. XCON (also called R1) is the expert configurer
[McDermott82a), and XSEL is the expert sales assistant [McDermott82b]. An XCON/XSEL
Problem-Reporting Protocol has been implemented. When layered on top of XCP, this protocol
allows the people who report, filter, assign responsibility for, and fix XSEL/XCON problems to
carry out their role-defined responsiblities. Its users will include the salespeople who use XSEL
- to help configure customer orders, and the developers and component database engineers who
support the XSEL and XCON users.

Another application to which XCP is being applied is to manage problem reporting for the
XCP project itself. An XCP Problem-Reporting Protocol (XPRP) has been implemented, which
tracks the flow of problem reports and related documents among the XCP developers and users.

XCP has a simplistic crash recovery mechanism which is satisfactory for the prototype. The
PT is checkpointed from time to time by copying its state to a file. In the event of a crash, this
file can be used to restart the PT. No effort has been made to keep track of changes made
between checkpoints. :

A database management system (DBMS) for XCP is planned for three reasons. First, the
commands which provide the user with information about the state of objects could then be
implemented so that the Cl directly accessed the DBMS rather than requesting the PT to do so.
This would result in less message traffic and faster service to the user. Second, it would be
possible to implement a true transaction system so that little or no user work would be lost in a
crash. Third, the prototype has a knowledge representation which uses dynamic memory to hold
all persons, roles, actors, and objects known to the system. As these increase, the amount of
dynamic memory available steadily decreases, performance degrades, and eventually a point would
be reached where there would be no free dynamic space and Lisp would spend all of its time
garbage collecting. A DBMS would use disk storage and avoid this problem.

An important scenario we envision is that there will be different XCP applications on various
computers in a network. One of those applications will be the XCP project itself running the
XPRP. Each application will want to be able to report problems to the XCP developers automatically.
To accommodate this, a method of transparent communication between the XPRP and the satellite
applications has been designed and is being implemented, using the Message Router product to
access the DECnet™ protocols.

To simplify the task of the protocol designer/implementor, we plan further research into the
problem of helping a user define formal XCP protocols based upon informal procedures. Protocols
are presently written in a procedural fashion, and it requires a considerable amount of time and
expertise to write one. Developing a protocol is a difficult task; it requires the protocol designer
to first capture the intentions of the people who wish to coordinate their actions, and then debug
the resulting protocol. This design/debug loop may require several iterations, even for seemingly
simple protocols. For these reasons, this research will focus in three areas: providing a
very-high-level protocol specification language, providing an environment for quickly testing
proposed protocols at the specification level (i.e., rapid prototyping of protocols), and providing a

translation mechanism from the specification into a form which XCP can execute.

6. Concluslons

XCP is an experimental coordinator tool which allows organizations to develop, maintain, and
carry out plans of cooperative activity, called protocois. It provides a method to formalize these
protocols, and can execute them. Two of its objectives are to shoulder the burden of managing
the organizational complexity and to ensure that necessary communication occurs. We believe
that this frees up people to use their time more productively.

An important effect is that XCP encourages an organization to clearly define formal procedural
obligations and relationships. Thus, the benefit to an organization is magnified because not only
are responsibilities clearly defined, but the transaction costs of communicating, coordinating, and
deciding could be reduced through a partnership between human and machine. Another possible
benefit is that XCP could aid new staff to learn a procedure.

Areas in which the application of XCP is likely to result in significant productivity gains are \J %

characterized by complex organizational procedures, frequently used procedures, procedures
involving multiple organizations, or procedures in which deviation could mean a significant loss
of time, effort, money, or materials. The application area in which the first protocols have been
written is problem reporting. Among other possible applications are inventory management, approvai
cycles, documentation control, and budget/planning cycles.

Acknowledgements

Many people have provided help in various forms. We wish to acknowledge the technical
contributions of Norbert McKenna and Elizabeth Augustine, who have been instrumental in the
implementation of XCP. Elizabeth Augustine, Allan Kent, Dennis O’Connor, and especially Stanley
Lee carefully read and commented on the paper. Gene Stringer, Linda Wright, Dave Stroll, Art
Beane, and Dick Paciulan provided direction on the final form that the paper took. Finally, we
would like to thank Dennis O’Connor for his continuing support.

References

[Cashman80] P. Cashman and A. Holt. "A Communication-Oriented Approach to Structuring
the Software Maintenance Environment'. ACM Software Engineering Notes,
Vol. 5, No. 1 (January 1980).

[Feldman79] S. Feldman. "Make — A Program for Maintaining Computer Programs".
Software Practice and Experience, Vol. 9, 255-265 (1979).

[Holt8 1] A. Holt and P. Cashman. "Designing Systems to Support Cooperative Activity:
An Example from Software Maintenance Management". Proceedings |EEE
Computer Society Fifth International Computer Software and Applications
Conference (COMPSAC), November 1981, pp. 184-191.

[Holt83] A. Holt et al. "Coordination System Technology as the Basis for a Programming

Environment". Electrical Communication, Vol. 57, No. 4 (1983), pp. 307-314.

(k‘ j\\f %

{

}

W};"y

A

]

W
/I
,‘) x/\
A

\

z

) 5

X

. [Kedzierski‘82] B. Kedzierski. "Communication and Management Support in System
Development Environments®". Proceedings Human Factors in Computer
. Systems (CHI '82), March 1982, pp. 163-168.

[Lampson83] B. Lampson and E. Schmidt. "Organizing Software in a Distributed
Environment®. Proceedings SIGPLAN 83 Symposium on Programming
‘Language Issues in Software Systems. In ACM SIGPLAN Notices, Vol. 18,
No. 6 (June 1983).

[McDermott82a] J. McDermott. "R1: A Rule-based Configurer of Computer Systems”. Artificial
Intelligence (Netherlands), Vol. 19, No. 1 (September 1982), pp. 39-88.

[McDermott82b] J. McDermott. “XSEL: A Computer Salesperson’s Assistant’. In Machine
Intelligence 10, J. Hayes and D. Michie (editors), Ellis Horwood Ltd, 1982.

[Peters83] T. Peters and R. Waterman. In Search of Excellence: Lessons from America's
Best-run_Companies. Harper and Row, 1982..

[Steele83] G. Steele Jr. Common Lisp Reference Manual. Carnegie-Mellon University,
1983.

	Workshop on Computer-Supported Cooperative Work: Front
	Letter from Paul M. Cashman, September 7, 1984

	Transcript of the Workshop on Computer-Supported Cooperative Work, August 13-15, 1984 Endicott House Dedham, MA
	Contents
	Topic 1 Introductions
	Topic 2 Taxonomies
	Topic 3 Applications.
	Topic 4 AI Technology
	Topic 5 Theory
	Topic 6 Primitives
	Topic 7 Multi-Media
	Topic 8 Future Directions
	Appendix Addresses, Phone Numbers, Network Mailboxes

	Workshop on Computer-Supported Cooperative Work August 13-15, 1984 Endicott House Dedham, Ma.: Readings
	Table of Contents
	Gerald Barber: An Offire Study: Its lmplkaiions on the Understanding of Organi1ations
	Sluizer and Cashman: XCP: An Experimental Tool for Managing Cooperative Activity
	Croft: Task Support In An Office System
	Ellis: An Office Information System Based on Intelligent Forms
	Ellis & Bernal: Officetalk-D: An Experimental Office Information System
	Ellis: Formal and Informal Models of Office Activity
	Engelsnart: A Conceptual Framework for the Augmentation of Man's Intellect"
	Engelbart: Authorship Provisions in Augment
	Engelbart: Collaboration Support Provisions in Augment
	Fox: An Organizational View o_f Distributed Systems
	Hiltz: Computer Networking as a Vehicle for Citizen Partic I Pation : A Case Study of the White House Conference on Productivity
	Holt, Ramsey & Grimes: Coordination System Technology as the Basis for a Programming Environment
	Johansen & Bullen: Thinking Ahead What to expect frotn teleconferencing
	Kedzierski: Communication and Management Support in System Development Environments
	Kedzierski: Knowledge-Based Project Management and Communication Support in a System Development Environment
	Lowe: The Representation of Debate as a Basis for Information Storage and Retrieval
	Malone & Smith: Tradeoffs in Designing Organizations: Implications for New Forms of Human Organizations and Computer Systems
	Trigg: TEXTNET: A Network-Based Approach to Text Handling
	Sarin & Greif: Software for Interactive On-Line Conferences
	Turoff: Information , Value & the Internal Marketplace

	[Additional readings, enclosed in binder]
	Pouzin: Team Tools for Team Work
	Jacques, Development of Intellectual Capability

	[Participants]

